Temporally Consistent Motion Segmentation from RGB-D Video

نویسندگان

  • Peter Bertholet
  • Alexandru Eugen Ichim
  • Matthias Zwicker
چکیده

We present a method for temporally consistent motion segmentation from RGB-D videos assuming a piecewise rigid motion model. We formulate global energies over entire RGB-D sequences in terms of the segmentation of each frame into a number of objects, and the rigid motion of each object through the sequence. We develop a novel initialization procedure that clusters feature tracks obtained from the RGB data by leveraging the depth information. We minimize the energy using a coordinate descent approach that includes novel techniques to assemble object motion hypotheses. A main benefit of our approach is that it enables us to fuse consistently labeled object segments from all RGB-D frames of an input sequence into individual 3D object reconstructions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Temporally Coherent 3D Animation Reconstruction from RGB-D Video Data

We present a new method to reconstruct a temporally coherent 3D animation from single or multi-view RGB-D video data using unbiased feature point sampling. Given RGB-D video data, in form of a 3D point cloud sequence, our method first extracts feature points using both color and depth information. In the subsequent steps, these feature points are used to match two 3D point clouds in consecutive...

متن کامل

Object Detection, Tracking, and Motion Segmentation for Object-level Video Segmentation

We present an approach for object segmentation in videos that combines frame-level object detection with concepts from object tracking and motion segmentation. The approach extracts temporally consistent object tubes based on an off-the-shelf detector. Besides the class label for each tube, this provides a location prior that is independent of motion. For the final video segmentation, we combin...

متن کامل

Spatio-Temporal Segmentation with Depth-Inferred Videos of Static Scenes

Extracting spatio-temporally consistent segments from a video sequence is a challenging problem due to the complexity of color, motion and occlusions. Most existing spatio-temporal segmentation approaches rely on pairwise motion estimation, which have inherent difficulties in handling large displacement with significant occlusions. This paper presents a novel spatio-temporal segmentation method...

متن کامل

Efficient Dense 3D Rigid-Body Motion Segmentation in RGB-D Video

Common motion is a fundamental grouping cue in video sequences. While for monocular and stereo image sequences, several approaches to motion segmentation have been investigated, it still remains a research problem to compute dense 3D motion segmentation efficiently. Many approaches match images sparsely at interest points and infer the groups of points with common 3D rigid-body motion (e.g., [1...

متن کامل

Toward Real-time Indoor Semantic Segmentation Using Depth Information

This work addresses multi-class segmentation of indoor scenes with RGB-D inputs. While this area of research has gained much attention recently, most works still rely on handcrafted features. In contrast, we apply a multiscale convolutional network to learn features directly from the images and the depth information. Using a frame by frame labeling, we obtain nearly state-of-the-art performance...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1608.04642  شماره 

صفحات  -

تاریخ انتشار 2016